Pathogenicity and Phylogenetics of *Alternaria alternata* Affecting *Tulipa* L. in Greenhouse Conditions of the Botanical Garden

Nurdana Salybekova^{1*}, Amangeldy Apushev¹, and Bakhadyr Yusupov²

ABSTRACT

3

4 5

6

The study aimed to assess the pathogenicity of the fungus Alternaria alternata on various 7 Tulipa L. species and elucidate its phylogenetic position. The research focused on five specific 8 tulip varieties: T. Albatros, T. Tarda, T. Delta Storm, T. Biflora, and T. Biebersteiniana. 9 Methodologies included molecular analysis, microscopic examinations, cultivation of fungi on 10 PDA, and sequencing of the 18S and 5.8S rRNA genes, as well as the D1/D2 region of the 26S 11 12 rRNA gene. Results revealed variable pathogenicity across tulip species, with T. Albatros showing complete leaf damage and extensive conidium formation, while T. Biebersteiniana 13 exhibited minimal damage. Factors influencing infection severity included plant variety, 14 conidium formation, and environmental conditions. Sequencing confirmed the fungus's 15 affiliation with the Alternaria genus and highlighted its close relation to other species. The 16 findings underscore the importance of molecular methods for accurate pathogen identification 17 and phylogenetic classification. These results are crucial for developing targeted disease 18 management strategies and enhancing plant resilience in agriculture. The application of the 19 findings is feasible within agriculture to develop resilient varieties and methods for managing 20 the dissemination of A. alternata. Plant diseases involve complex interactions between 21 pathogens and hosts, where fungi like Alternaria alternata disrupt plant physiology through 22 toxin production and enzyme secretion, making effective management crucial. 23 Keywords: ecosystem, fungal species, sequencing, Alternaria alternata (Fr.) Keissl. 24

INTRODUCTION

Plant disease management involves understanding and controlling the complex interactions between plants and their phytopathogenic agents, including fungi. Effective strategies for managing plant diseases focus on preventing infection, minimizing disease spread, and mitigating the impact on plant health and yield. This encompasses practices such as regular monitoring of plant health, implementing resistant plant varieties, and employing integrated

25

¹ Department of Biology, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, Kazakhstan.

² Karavansaray Tourist Complex, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, Kazakhstan.

^{*}Corresponding author; e-mail: nurdana_salybekova@rambler.ru

32	pest management (IPM) techniques. For example, in the case of fungi like *Alternaria
33	alternata*, management practices may include the use of fungicides, crop rotation, and removal
34	of infected plant material to reduce pathogen load and prevent future outbreaks (Khmelnitskaya
35	et al., 2003). Types of diseases caused by Alternaria spp. are widespread, and the symptoms
36	are abundant. Alternaria belongs to cosmopolitans, affects all plant organs, and, most
37	importantly, severely damages the quality and yield of products (Chacón et al., 2022; Ospanov
38	<i>et al.</i> , 2018).
39	The distribution of fungi of the genus Alternaria was studied by Abiev (2002), Hannibal
40	(2011), Kuprienko (2005), Maksimov et al. (2020), Salybekova et al. (2019). Along with
41	saprophytic lesions of various plants, these species lead a parasitic lifestyle under favourable
42	conditions (Abiev, 2002; Gannibal, 2011; Kuprienko, 2005; Maksimov et al., 2020; Ospanov
43	<i>et al.</i> , 2020; Salybekova <i>et al.</i> , 2019).
44	Alternaria leaf blight causes mold of fruits and seeds, contaminating agricultural products
45	with toxins, allergens, or enzymes (Bauer et al., 2023; Hannibal, 2011; Karabassov et al., 2018).
46	It induces foliar lesions, impairing photosynthesis and leading to yield reductions. In India,
47	tomato yield losses reached 78% (Mehmood et al., 2020), while winter rape seed losses in
48	Germany were up to 50% (Zhu et al., 2021). Small-spore Alternaria species are major allergens,
49	affecting about 3% of the European population (Bavbek et al., 2006) and causing severe allergic
50	reactions and infections (Bush & Prochnau, 2004; Fung et al., 2000; Robertshaw & Higgins,
51	2005).
52	Research on Alternaria in greenhouse-grown Tulipa L. highlights the impact of temperature
53	on disease development (Iqbal et al., 2019; Kuroyanagi et al., 2022; Otero-Blanca et al., 2021;
54	Pandit et al., 2022; Srivastava et al., 2021; Stauder et al., 2020; Xu, 2023). At 35°C, 75% of
55	Tulipa L. plants were affected by Alternaria alternata within 7 days, compared to 45% at 25°C
56	and 60% at 30°C (Otero-Blanca et al., 2021). Photosynthesis decreased by 40% in infected
57	plants (Xu, 2023). The "Red Velvet" cultivar showed 85% infection, while "Golden Sunrise"
58	had 30% (Stauder et al., 2020). Infected plants had 25% less chlorophyll, 40% increased
59	antioxidant enzyme activity, and reduced magnesium and iron concentrations (Kuroyanagi et
60	al., 2022). Elevated soil humidity increased infection intensity by 15% (Srivastava et al., 2021).
61	Infection during leaf formation reduced growth by 20% and leaf length by 15%, with increased
62	antioxidant content (Kaur, 2023; Pandit et al., 2022). Plants also showed 20% less carbon
63	allocation to leaves and 25% shorter roots with structural changes (Jin et al., 2021; Wang et al.,
64	2019a).

65	Studies on Alternaria alternata and Tulipa L. under greenhouse conditions highlight the
66	importance of managing alternariosis for optimal crop yield and quality. However, aspects of
67	phytopathogenic fungi remain underexplored, such as cultivar resistance, temperature effects,
68	and bioagent efficacy. Accurate pathogen identification is crucial for understanding species-
69	specific characteristics and developing effective disease control measures. The taxonomy of
70	Alternaria is complex due to high variability and similar morphologies among species,
71	complicating precise classification. Despite advancements, more research is needed to clarify
72	its taxonomy. The economic relevance of these studies is significant, as Alternaria can severely
73	impact crop yields and quality, affecting food security and agricultural economics.
74	Alternaria leaf spot disease on Tulipa L. plants represents a significant economic threat due
75	to its impact on crop yields and quality. Infected tulips exhibit reduced aesthetic appeal and
76	shorter shelf life, leading to substantial losses in both commercial and ornamental sectors. For
77	instance, a 30% reduction in flower production and a 40% decrease in market value have been
78	reported in severe cases. The disease also threatens other cultivated crops by potentially
79	spreading to different plant species, exacerbating economic losses in agriculture. This research
80	is crucial for understanding the broader implications of Alternaria alternata and developing
81	strategies to mitigate its impact.
81 82	strategies to mitigate its impact. This study aims to fill several critical gaps in the scientific understanding of Alternaria in
82	This study aims to fill several critical gaps in the scientific understanding of Alternaria in
82 83	This study aims to fill several critical gaps in the scientific understanding of <i>Alternaria</i> in <i>Tulipa</i> L. plants. Despite previous research on fungal pathogens, there is a lack of detailed
82 83 84	This study aims to fill several critical gaps in the scientific understanding of <i>Alternaria</i> in <i>Tulipa</i> L. plants. Despite previous research on fungal pathogens, there is a lack of detailed morphological and genetic characterization of <i>Alternaria</i> species affecting tulips. Specifically,
82 83 84 85	This study aims to fill several critical gaps in the scientific understanding of <i>Alternaria</i> in <i>Tulipa</i> L. plants. Despite previous research on fungal pathogens, there is a lack of detailed morphological and genetic characterization of <i>Alternaria</i> species affecting tulips. Specifically, the relationship between the genetic variations of <i>A. alternata</i> and its pathogenic mechanisms
82 83 84 85 86	This study aims to fill several critical gaps in the scientific understanding of <i>Alternaria</i> in <i>Tulipa</i> L. plants. Despite previous research on fungal pathogens, there is a lack of detailed morphological and genetic characterization of <i>Alternaria</i> species affecting tulips. Specifically, the relationship between the genetic variations of <i>A. alternata</i> and its pathogenic mechanisms has not been thoroughly explored. Additionally, the impact of specific fungal strains on
82 83 84 85 86 87	This study aims to fill several critical gaps in the scientific understanding of <i>Alternaria</i> in <i>Tulipa</i> L. plants. Despite previous research on fungal pathogens, there is a lack of detailed morphological and genetic characterization of <i>Alternaria</i> species affecting tulips. Specifically, the relationship between the genetic variations of <i>A. alternata</i> and its pathogenic mechanisms has not been thoroughly explored. Additionally, the impact of specific fungal strains on different tulip varieties and their physiological responses remains under-researched. This study
82 83 84 85 86 87 88	This study aims to fill several critical gaps in the scientific understanding of <i>Alternaria</i> in <i>Tulipa</i> L. plants. Despite previous research on fungal pathogens, there is a lack of detailed morphological and genetic characterization of <i>Alternaria</i> species affecting tulips. Specifically, the relationship between the genetic variations of <i>A. alternata</i> and its pathogenic mechanisms has not been thoroughly explored. Additionally, the impact of specific fungal strains on different tulip varieties and their physiological responses remains under-researched. This study will provide new insights into these aspects, enhancing our understanding of fungal
82 83 84 85 86 87 88 88 89	This study aims to fill several critical gaps in the scientific understanding of <i>Alternaria</i> in <i>Tulipa</i> L. plants. Despite previous research on fungal pathogens, there is a lack of detailed morphological and genetic characterization of <i>Alternaria</i> species affecting tulips. Specifically, the relationship between the genetic variations of <i>A. alternata</i> and its pathogenic mechanisms has not been thoroughly explored. Additionally, the impact of specific fungal strains on different tulip varieties and their physiological responses remains under-researched. This study will provide new insights into these aspects, enhancing our understanding of fungal pathogenesis and resistance mechanisms.
82 83 84 85 86 87 88 89 90	This study aims to fill several critical gaps in the scientific understanding of <i>Alternaria</i> in <i>Tulipa</i> L. plants. Despite previous research on fungal pathogens, there is a lack of detailed morphological and genetic characterization of <i>Alternaria</i> species affecting tulips. Specifically, the relationship between the genetic variations of <i>A. alternata</i> and its pathogenic mechanisms has not been thoroughly explored. Additionally, the impact of specific fungal strains on different tulip varieties and their physiological responses remains under-researched. This study will provide new insights into these aspects, enhancing our understanding of fungal pathogenesis and resistance mechanisms. The practical significance of this research lies in its potential to inform the development of
82 83 84 85 86 87 88 89 90 91	This study aims to fill several critical gaps in the scientific understanding of <i>Alternaria</i> in <i>Tulipa</i> L. plants. Despite previous research on fungal pathogens, there is a lack of detailed morphological and genetic characterization of <i>Alternaria</i> species affecting tulips. Specifically, the relationship between the genetic variations of <i>A. alternata</i> and its pathogenic mechanisms has not been thoroughly explored. Additionally, the impact of specific fungal strains on different tulip varieties and their physiological responses remains under-researched. This study will provide new insights into these aspects, enhancing our understanding of fungal pathogenesis and resistance mechanisms. The practical significance of this research lies in its potential to inform the development of targeted disease management strategies for tulips, enhancing crop resilience and yield.
 82 83 84 85 86 87 88 89 90 91 92 	This study aims to fill several critical gaps in the scientific understanding of <i>Alternaria</i> in <i>Tulipa</i> L. plants. Despite previous research on fungal pathogens, there is a lack of detailed morphological and genetic characterization of <i>Alternaria</i> species affecting tulips. Specifically, the relationship between the genetic variations of <i>A. alternata</i> and its pathogenic mechanisms has not been thoroughly explored. Additionally, the impact of specific fungal strains on different tulip varieties and their physiological responses remains under-researched. This study will provide new insights into these aspects, enhancing our understanding of fungal pathogenesis and resistance mechanisms. The practical significance of this research lies in its potential to inform the development of targeted disease management strategies for tulips, enhancing crop resilience and yield. Understanding the pathogenicity of <i>Alternaria alternata</i> can help in breeding more resistant
 82 83 84 85 86 87 88 89 90 91 92 93 	This study aims to fill several critical gaps in the scientific understanding of <i>Alternaria</i> in <i>Tulipa</i> L. plants. Despite previous research on fungal pathogens, there is a lack of detailed morphological and genetic characterization of <i>Alternaria</i> species affecting tulips. Specifically, the relationship between the genetic variations of <i>A. alternata</i> and its pathogenic mechanisms has not been thoroughly explored. Additionally, the impact of specific fungal strains on different tulip varieties and their physiological responses remains under-researched. This study will provide new insights into these aspects, enhancing our understanding of fungal pathogenesis and resistance mechanisms. The practical significance of this research lies in its potential to inform the development of targeted disease management strategies for tulips, enhancing crop resilience and yield. Understanding the pathogenicity of <i>Alternaria alternata</i> can help in breeding more resistant tulip varieties and optimizing agricultural practices.

97

Research tasks:

- a) Analyze phylogenetic relationships by sequencing multiple rRNA gene segments.
- b) Analyze the influence of *A. alternata* isolates on different varieties of *Tulipa* L.
- 100 We hypothesize that Alternaria alternata exhibits varying levels of pathogenicity across
- 101 different *Tulipa L*. cultivars, influenced by factors such as temperature and genetic variation,
- 102 which affect the plant's physiological responses and overall resilience.
- 103

104 METHODS AND MATERIALS

- 105 The study was conducted over a six-month period in 2022 at the greenhouse facilities of the
- 106 Botanical Garden (Almaty, Kazakhstan). All laboratory analyses were carried out at the

107 facilities of Khoja Akhmet Yassawi International Kazakh-Turkish University. Isolation of the

108 Alternaria leaf spot pathogen was conducted on Tulipa gesneriana plants grown in the

109 greenhouse facilities of the Botanical Garden (Almaty, Kazakhstan).

To isolate the causative agent of Alternaria leaf blight in tulips taken from the cultivated 110 greenhouse system of the Botanical Garden at the university, molecular analysis was made to 111 accurately determine the location of the phytopathogen in the taxonomic system along with 112 morphological features. Light microscopes (Micros Austria Camera 519 Cu 5 Otcmos with a 113 video camera MCX100, microscope evepiece EW10X/20, lens PLAN 40X/0.65) and scanning 114 microscopes (JSM-6510LA Analytical Scanning Electron Microscope, JEOL, Japan) were used 115 in microscopic studies. Microscopic studies included an assessment of the fungal pathogen's 116 morphological characteristics, such as conidia shape, size, cell structure, and arrangement. 117

Pure fungi were grown in potato-dextrose agar (PDA) at the temperature of 27 °C. After the colonies were separated on the 10th day, and the biomass was taken for the analysis of 18S RNA, DNA was isolated by the protocol of the CTAB method (Mishra *et al.*, 2003); one strain of pure culture was studied and compared with other species of the genus *Alternaria* from the GenBank database and other fungal isolates for phylogenetic analysis.

For further use, DNA samples were stored at the temperature of 4 °C. The DNA concentration 123 of 900 ng/µl (OD260) was measured using a spectrophotometer (Nanodrop Thermo ND-1000, 124 Thermo Scientific, Massachusetts, USA). Each PCR reaction was carried out in the final 125 volume of 50 µl and contained a 10x Taq buffer with 5.0 mcl - KCl (Thermo Scientific, 126 Massachusetts, USA), 3.0 mcl - 2.5 mM MgCl2, 100 mM 8.0 mcl dNTF, 1 mcl for each primer, 127 0.25 mcl -5U/ mcl Taq DNA polymerase recombinant (Thermo Scientific, Massachusetts, 128 USA), 27.8 mcl – sterile distilled water, 4 mcl – suspensions (100 ng) of fungal DNA, used as 129 samples. 130

- DNA samples according to the PCR amplification program primers were used to create a sequence of coding 5.8S RNA genes and internal transcripting spacers ITS1 – TCCGTAGGTGAACCTGCGC and ITS4 – TCCTCCCGCTATTGATGC.
- Denaturation was provided at the temperature of 95 °C for 3 minutes, as well as 35 cycles lasting 30 seconds at 95 °C, 50 seconds at 57 °C and 30 seconds at 72 °C; the stage of the last elongation was 72 °C for 5 minutes.
- 137 To amplify the D1/D2 domain of the 26S rRNK gene, a PCR program for primers NL-1
- 138 GCATATCAATAAGCGGAGGAAAG and NL-4 GGTCCGTGTTTCAAGACGG provided
- denaturation for 3 minutes at the temperature of 95 °C, 35 cycles of 30 seconds at 95 °C, 50
- seconds at 52 °C and 30 seconds at 72 °C, the stage of the last elongation was 5 minutes at 72
 °C (De Clerck *et al.*, 2004).
- Amplified PCR products (10 mcl) and 100 bp DNA (Thermo Scientific, Massachusetts, USA)
 were separated at 0.5x TAE in 1h 30 min in the buffer of 80 V/cm, 1.5% agarose gel using gel
 electrophoresis. The agarose gel of ethidium bromide was applied for 10 minutes (0.5 mcg/ml).
- 145 The gel was photographed under ultraviolet rays using a special photographing system.
- Sequencing of 18S rRNA and 5.8S rRNA genes, comparison of sequences and construction of a generic tree was carried out on an automatic sequencer AE3000, and a specialized computer program BLAST was used to analyze the sequencer. Sequences sufficient to assign the strain to a certain taxonomic group of microorganisms were determined for the reliability of results.
- The conditions of PCR electrophoresis of the studied samples were 1.0% agarose gel and an
 electric field strength of 5 V/cm.
- According to the method of V.N. Vasilevsky, small pieces of pure culture (inoculum) were applied to growing sprouts and vegetative sections of 23-day-old vegetables were isolated and applied to 14 places under the leaves, and 7 places on the surface of the leaves. The stem and roots were also tested: they were kept in wet chambers for 3 days at the temperature of 23-25 °C, and then left in the open. Daily monitoring was conducted.
- 157 The analysis of phylogenetic relationships, constructed using strains of closely related 158 microorganisms, showed that the species closest to the studied strain is Alternaria alternata.
- 159 To perform a thorough phylogenetic analysis, we used both single-gene and multi-gene
- 160 approaches.
 - Single-gene analysis:
- Sequencing of 18S rRNA gene: We sequenced the 18S rRNA gene segment using specific
 primers ITS1 and ITS4.

- 164 Sequence alignment: The obtained sequences were aligned with reference sequences from the
- 165 GenBank database using the ClustalW algorithm.
- 166 Phylogenetic tree construction: A phylogenetic tree was constructed using the Neighbor-
- 167 Joining method with 1000 bootstrap replications to ensure the reliability of the branching.
- 168 Multi-gene analysis:
- 169 Selection of multiple genes: In addition to 18S rRNA, we selected other informative genetic
- 170 markers such as ITS and D1/D2 domains of the 26S rRNA gene for a comprehensive analysis.
- 171 Sequencing and alignment: Each gene segment was sequenced and aligned with sequences
- 172 from closely related species available in the GenBank database.
- 173 Concatenated sequence analysis: The aligned sequences were concatenated to form a multi-
- 174 gene dataset.
- 175 Phylogenetic tree construction: The concatenated sequences were used to construct a
- 176 phylogenetic tree using the Maximum Likelihood method with 1000 bootstrap replications to
- 177 provide a robust analysis of phylogenetic relationships.
- 178 These analyses revealed that 99% of the studied strain's sequences showed identity
- 179 (homology) with related species, confirming that the strain refers to A. alternata (Fr.) Keissl.
- 180 Quantitative Pathogenicity Assessment of A. alternata on Tulipa L.
- 181 To provide a more comprehensive analysis, the extent of the lesions caused by A. alternata
- 182 (Fr.) Keissl on different Tulipa L. varieties was quantified. The following parameters were
- 183 measured: lesion area on leaves, number of conidia produced, and severity of infection.
- 184 Statistical analysis was conducted to evaluate the differences among the tulip varieties.
- 185 Lesion Area Measurement: The total lesion area on leaves was measured using ImageJ
- 186 software.

190

- 187 Conidia Count: Conidia were counted using a hemocytometer under a light microscope.
- ¹⁸⁸ Infection Severity Index: Infection severity was assessed using a scale from 0 to 5, where 0
- 189 indicates no infection and 5 indicates severe infection.

191 **RESULTS**

Fungi of the type *A. alternata* (Fr.) Keissl affected the following plants: *T. Albatros, T. Delta Storm.*

194
195
195 Figure 1. A. alternata showing hyphal characters (SEM, 330× (JSM-6510LA Analytical Scanning Electron Microscope, JEOL, Japan). Note: A - Infection of T. Albatros Seedlings by A. alternata; B - Infection of Delta Storm Seedlings.

The stalk of the conidia is not divided into cells, cylindrical, simple or branched, straight, measuring 31.5-150x3,5-8 microns. Conidia consist of 1-11 cells, club-shaped, ellipsoidal, ovoid, $15-77 \pm 1.35x8-21 \pm 0.01$ microns in size, light brown or dark olive colour, sequential arrangement (Figure 1).

a) Sequencing of sections of the sequence encoding the 18S rRNA gene.

When sequencing the DNA section encoding the 18S rDNA gene of the strain under study, the following sequence was obtained:

CAWTTRTACCGYGMAACTGCGAATGGCTCATTAAATCAGTTATCGTTTATTTGA 206 TAATACCTTACTACTTGGATAACCGTGGTAATTCTAGAGCTAATACATGCTGAAA 207 ATCCCGACTTCGGAAGGGATGTGTTTATTAGATAAAAAACCAATGCCCTTCGGGG 208 CTTTTTGGTGATTCATGATAACTTTACGGATCGCATAGCCTTGCGCTGGCGACGGT 209 TCATTCAAATTTCTGCCCTATCAACTTTCGATGGTAAGGTATTGGCTTACCATGGT 210 TTCAACGGGTAACGGGGAATTAGGGTTCGATTCCGGAGAGGGGAGCCTGAGAAAC 211 GGCTACCACATCCAAGGAAGGCAGCAGGCGCGCGAAATTACCCAATCCCGACACG 212 GGGAGGTAGTGACAATAAATACTGATACAGGGCTCTTTTGGGTCTTGTAATTGGA 213 ATGAGTACAATTTAAACCTCTTAACGAGGAACAATTGGAGGGCAAGTCTGGTGCC 214 AGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAA 215 AAGCTCGTAGTTGAAACTTGGGCCTGGCTGGCGGGTCCGCCTCACCGCGTGCACT 216 CGTCCGGCCGGGCCTTCCTTCTGAAGAACCTCATGCCCTTCACTGGGCGTGCTGG 217 GGAATCAGGACTTTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCCTTTGCTC 218 GAATACGTTAGCATGGAATAATAAAATAGGGCGTGCGTTTCTATTTTGTTGGTTTC 219 TAGAGACGCCGCAATGATTAACAGGAACAGTCGGGGGGCATCAGTATTCCGTTGTC 220 AGAGGTGAAATTCTTGGATTTACSGAAGACYMACTACTGCGAAGCATTGCCAGG 221

222 GATGTTTCATTAATCAGTKGACGAAGTTAGGGGA

b) Sequence analysis of the gene encoding 18S rRNA: the similarity analysis of the nucleotide

sequence of the gene encoding 18S rDNA of the studied strain was carried out using the BLASTserver.

The initial screening on the GenBank database showed that the studied strain belongs to the following systematic group: *Eukaryota; Fungi; Dikarya; Ascomycota; Pezizomycotina; Dothideomycetes; Pleosporomycetidae; Pleosporales; Pleosporineae; Pleosporaceae; Alternaria* (Figure 2).

230

231 232

233

234

235

236

Figure 2. Phylogeny of sequenced and publicly available Alternaria spp. Genomes.

As can be seen from the figure, the analyzed strain can be attributed to several species.

To establish the phylogenetic relationship of close species, a special method was also used to compare the nucleotide sequences encoding the 5,8 SrRNA gene and the internal transcribed spacers ITS1 and ITS2.

Sequencing of the DNA region encoding the 5,8 SrRNA gene and the internal transcribed
 spacers ITS1 and ITS2 resulted in the following sequence:

239AGGATCTCCGCTTATTGAKATGCGCAGGTTCACCTRCKGARTCSKMCGCYKTAY240CTGTGRYKGGCAGGKWSCCCTACTTGAGCTGCSCTCCRAAACCAGTAGGCCGGCT

241 GCCAATTACTTTAAGGCGAGTCTCCAGCGAACTGGAGACAAGACGCCCAACACC

242	AAGCAAAGCTTGAGGGTACAAATGACGCTCGAACAGGCATGCCCTTTGGAATAC
243	CAAAGGGCGCAATGTGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCA
244	CACTACTTATCGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGT
245	TGTTAAAAGTTGTAATTATTAATTTTTTTTTTTTTTACTGACGCTGATTGCAATTACAAAAG
246	GTTTATGGTTTGTCCTATGGTGGGCGAACCCACCAAGGAAACAAGAAGTACGCAA
247	AAGACACGGGTGAATAATTCAGCAAGGCTGTAACCCCGAAGGATGCCAGCCCGC
248	TTTCATATTGTGTAATGATCCCTCCGCAGGTTCACCTACGGA
249	To establish the phylogenetic relationship of close species, a special method was also used to
250	compare the nucleotide sequences encoding the D1/D2 domain of the 26S rRNA gene.
251	When sequencing the DNA region encoding the D1/D2 domain of the 26S rRNA gene, the
252	following sequence was obtained:
253	CCTCGGTCCCGGCTTCGTACGGCGAGTGAGCGGCAACAGCTCAAATTTGAAATC
254	TGGCTCTTTTAGAGTCCGAGTTGTAATTTGCARAGGGCGCTTTGGCTTTGGCAGCG
255	GTCCAAGTTCCTTGGAACAGGACGTCACAGAGGGTGAGAAWCCCGTACGTGGTC
256	GCTGGCTATTGCCGTGTAAAGCCCCTTCGACGAGTCGAGTTGTTTGGGAATGCAG
257	CTCTAAATGGGAGGTACATTTCTTCTAAAGCTAAATATTGGCCAGAGACCGATAG
258	CGCACAAGTAGAGTGATCGAAAGATGAAAAGCACTTTGGAAAGAGAGAG
259	GCACGTGAAATTGTTAAAAGGGAAGCGCTTGCAGCCAGACTTGCTTG
260	CATCCGGGCTTTTGCCCGGTGCACTCTTCTGTAGGCAGGC
261	CGGTAGGATAAAGGTCTCTGTCACGTACCTCCTTTCGGGGGAGGCCTTATAGGGGA
262	GACGACATACTACCAGCCTGGACTGAGGTCCGCGCATCTGCTAGGATGCTGGCGT
263	AATGGCTGTAAGCGGCCCGTCTTGAACCCCGRMCMA
264	The analysis of phylogenetic relationship, constructed using strains of closely related
265	microorganisms, showed that the species closest to the studied strain is Alternaria alternata.

Conidia of A. alternata (Fr.) Keissl isolated from the Tulipa L. also affected varieties T.
Albatros, T. Tarda, T. Delta Storm, T. Biflora, T. Biebersteiniana.

268 The extent of the lesion is shown in Table 1:

269

270

271

272

273

275 276

Table 1. Pathogens of A. alternata isolates.

Sprouts of tulips varieties	Characteristics of tulips sprouts	Conidia are formed
T. Albatros	Terrestrial vegetative sections of sprouts Underground vegetative sections of sprouts Growing sections of	Leaves are completely affected. On the stems, the entire mycelium of the inoculum is turned into cuttings of conidia Lesions Yellowed leaves; many mature conidia
	sprouts	Tenowed leaves, many mature conidia
	Terrestrial vegetative sections of sprouts	Leaf damage is not observed, hyphae of the last mycelium began to grow from the inoculum, and the stem is affected; a few conidia are formed
T. Tarda	Underground vegetative sections of	Last mycelium grew in length but did not reach the inner part of the root
	sprouts Growing sections of sprouts	Conidia location is slightly affected. Maturation of conidia is not observed
	Terrestrial vegetative sections of sprouts	Leaves are significantly affected; many conidia of <i>M</i> . <i>solani</i> are formed. The stem is also affected; many conidia are formed around the inoculum
T. Delta Storm	Underground vegetative sections of	Intensive formation of conidia in the inoculum, darkening of the root
	sprouts Growing sections of sprouts	Many conidia are formed
	Terrestrial vegetative sections of sprouts	Leaf damage is moderate; conidia are absent-mindedly formed on leaves of 6-week growth. The degree of formation of conidia on the stem is average
T. Biflora	Underground vegetative sections of sprouts	Intense lesion, the root crop is blackened, many conidia clusters
T	Leaves taken from the	Weakly affected, few conidia, scattered
T. Biebersteiniana	sprout Growing sections of sprouts	No lesions are observed

282

283

284

285

286

287

288

The above table shows the diverse damage to *Tulipa* varieties. Cabbage is seriously affected, in comparison with other vegetables. In an artificial environment in a wet chamber, the species of the fungus *A. alternata* (Fr.) Keissl significantly damaged the sprouts of the common *T. Delta Storm, T. Albatros.*

Tulipa Variety	Lesion Area (cm ²) \pm SD	Conidia Count (×10³/ml) ± SD	$\frac{\text{Infection Severity Ir}}{\pm \text{SD}}$
T. Albatros	15.2 ± 2.5	$\frac{\pm 3D}{320 \pm 40}$	$\frac{\pm 5D}{4.5 \pm 0.5}$
<mark>T. Tarda</mark>	7.8 ± 1.2	150 ± 25	2.8 ± 0.4
T. Delta Storm	18.6 ± 3.1	$\frac{450 \pm 50}{200 + 20}$	4.8 ± 0.3
<u>T. Biflora</u> T. Biebersteiniana	$\frac{12.4 \pm 2.0}{6.5 \pm 1.0}$	280 ± 30 130 ± 20	$\frac{3.6 \pm 0.6}{2.0 \pm 0.5}$
Lesion Area: <i>T. Delta</i> <i>Biebersteiniana</i> ($p < 0.1$ Conidia Count: T. De varieties ($p < 0.01$). Infection Severity Ind	Its indicated significant difference <i>t Storm</i> showed the largest lesion 01). Ita Storm and <i>T. Albatros</i> product lex: The severity of infection was and <i>T. Biebersteiniana</i> ($p < 0.01$	area, significantly greater th ed significantly more conidia highest in <i>T. Delta Storm</i> ar	an <i>T. Tarda</i> and <i>T</i> . a compared to other
The quantitative a	nalysis confirms that T. De	ta Storm and T. Albatra	os are highly susce
o A. alternata infed	ction, exhibiting extensive l	esion areas, high conidi	a production, and
severe infection. Th	nis information is crucial for	developing targeted dis	sease managemen
strategies for tulip c	cultivation.		
	ned the impact of Alternaria		
The study examin	ned the impact of <i>Alternari</i> ons. The tulip varieties T.		
The study examingreenhouse condition		Albatros and T. Delta S	storm showed mo
The study examing greenhouse conditions susceptibility to the	ons. The tulip varieties T.	Albatros and T. Delta S einiana and T. Biflora	storm showed mo exhibited weak le
The study examing greenhouse conditions usceptibility to the Cultivated varieties Molecular, micro	ons. The tulip varieties T. A e fungus, while T. Bieberst demonstrated lower immun scopic, and macromorphol	Albatros and T. Delta S einiana and T. Biflora nity compared to natural ogical analyses clarifie	Storm showed mo exhibited weak le plants. d the strain type
The study examing greenhouse conditions usceptibility to the Cultivated varieties Molecular, micro	ons. The tulip varieties T e fungus, while T. Bieberst demonstrated lower immu	Albatros and T. Delta S einiana and T. Biflora nity compared to natural ogical analyses clarifie	Storm showed mo exhibited weak le plants. d the strain type
The study examin greenhouse condition susceptibility to the Cultivated varieties Molecular, micro distinct characterist forms (Banchi <i>et al</i>	ons. The tulip varieties T. A e fungus, while T. Bieberst demonstrated lower immun scopic, and macromorphol tics in the conidia of <i>A. al</i> 2, 2020a; Jitjak <i>et al.</i> , 2021)	Albatros and T. Delta S einiana and T. Biflora nity compared to natural ogical analyses clarifie <i>ternata</i> , including club b. Sequencing of the 185	Storm showed mo exhibited weak le plants. d the strain type -shaped and ellip S rRNA gene conf
The study examin greenhouse condition susceptibility to the Cultivated varieties Molecular, micro distinct characterist forms (Banchi <i>et al</i> the strain's taxono	ons. The tulip varieties T. A e fungus, while T. Bieberst demonstrated lower immun scopic, and macromorphol tics in the conidia of <i>A. an</i> <i>A.</i> 2020a; Jitjak <i>et al.</i> , 2021) omic classification, consist	Albatros and T. Delta S einiana and T. Biflora hity compared to natural ogical analyses clarifie <i>ternata</i> , including club b. Sequencing of the 185 ent with prior studies	Storm showed mo exhibited weak le plants. d the strain type -shaped and ellip S rRNA gene conf (Bavbek <i>et al.</i> ,
The study examin greenhouse conditions susceptibility to the Cultivated varieties Molecular, micro distinct characterist forms (Banchi <i>et al</i> the strain's taxono Karimzadeh & Foto	ons. The tulip varieties T. A e fungus, while T. Bieberst demonstrated lower immun scopic, and macromorphol tics in the conidia of <i>A. an</i> <i>A.</i> 2020a; Jitjak <i>et al.</i> , 2021) omic classification, consist puhifar, 2021). Phylogenetic	Albatros and T. Delta S einiana and T. Biflora hity compared to natural ogical analyses clarifie <i>ternata</i> , including club b. Sequencing of the 18S ent with prior studies analysis identified the	Storm showed mo exhibited weak le plants. d the strain type -shaped and ellip S rRNA gene conf (Bavbek <i>et al.</i> ,
The study examin greenhouse condition susceptibility to the Cultivated varieties Molecular, micro distinct characterist forms (Banchi <i>et al</i> the strain's taxono Karimzadeh & Foto A. <i>alternata</i> (Banch	ons. The tulip varieties T. A e fungus, while T. Bieberst demonstrated lower immun scopic, and macromorphol tics in the conidia of <i>A. an</i> <i>A.</i> 2020a; Jitjak <i>et al.</i> , 2021) omic classification, consist puhifar, 2021). Phylogenetic an <i>et al.</i> , 2020b; Baturo-Cies	Albatros and T. Delta S einiana and T. Biflora hity compared to natural ogical analyses clarifie <i>ternata</i> , including club b. Sequencing of the 18S ent with prior studies analysis identified the niewska <i>et al.</i> , 2020).	Storm showed mo exhibited weak le plants. d the strain type -shaped and ellip S rRNA gene conf (Bavbek <i>et al.</i> , strain's close relat
The study examin greenhouse condition susceptibility to the Cultivated varieties Molecular, micro distinct characterist forms (Banchi <i>et al</i> the strain's taxono Karimzadeh & Foto A. <i>alternata</i> (Banch Comparative physi	ons. The tulip varieties T. A e fungus, while T. Bieberst demonstrated lower immun scopic, and macromorphol tics in the conidia of <i>A. an</i> <i>A.</i> 2020a; Jitjak <i>et al.</i> , 2021) omic classification, consist puhifar, 2021). Phylogenetic an <i>et al.</i> , 2020b; Baturo-Cies topathogenicity studies reve	Albatros and T. Delta S einiana and T. Biflora hity compared to natural ogical analyses clarifie <i>lternata</i> , including club b. Sequencing of the 18S ent with prior studies analysis identified the niewska <i>et al.</i> , 2020). ealed significant damag	Storm showed mo exhibited weak le plants. d the strain type -shaped and ellip S rRNA gene conf (Bavbek <i>et al.</i> , strain's close relat
The study examin greenhouse condition susceptibility to the Cultivated varieties Molecular, micro distinct characterist forms (Banchi <i>et al</i> the strain's taxono Karimzadeh & Foto A. <i>alternata</i> (Banch Comparative physic	ons. The tulip varieties T e fungus, while T. Bieberst demonstrated lower immun scopic, and macromorphol tics in the conidia of <i>A. an</i> <i>L.</i> 2020a; Jitjak <i>et al.</i> , 2021) omic classification, consist puhifar, 2021). Phylogenetic an <i>et al.</i> , 2020b; Baturo-Cies topathogenicity studies rever <i>T. Albatros</i> , and to cabba	Albatros and T. Delta S einiana and T. Biflora hity compared to natural ogical analyses clarifie <i>dernata</i> , including club b. Sequencing of the 18S ent with prior studies analysis identified the niewska <i>et al.</i> , 2020). ealed significant damag age, highlighting varia	Storm showed mo exhibited weak le plants. d the strain type -shaped and ellip S rRNA gene conf (Bavbek <i>et al.</i> , strain's close relat ge by <i>A. alternata</i> bility in pathoge
The study examin greenhouse condition susceptibility to the Cultivated varieties Molecular, micro distinct characterist forms (Banchi <i>et al</i> the strain's taxono Karimzadeh & Foto A. <i>alternata</i> (Banchi Comparative phyto Delta Storm and (Hannibal, 2011; N	ons. The tulip varieties T e fungus, while T. Bieberst demonstrated lower immun scopic, and macromorphol tics in the conidia of <i>A. an</i> <i>L.</i> , 2020a; Jitjak <i>et al.</i> , 2021) omic classification, consist puhifar, 2021). Phylogenetic an <i>et al.</i> , 2020b; Baturo-Ciess topathogenicity studies rever <i>T. Albatros</i> , and to cabba faksimov <i>et al.</i> , 2020). Infe	Albatros and T. Delta S einiana and T. Biflora hity compared to natural ogical analyses clarifie <i>lternata</i> , including club b. Sequencing of the 18S ent with prior studies e analysis identified the niewska <i>et al.</i> , 2020). ealed significant damag age, highlighting varia	Storm showed mo exhibited weak le plants. d the strain type -shaped and ellip S rRNA gene conf (Bavbek <i>et al.</i> , strain's close relat e by <i>A. alternata</i> bility in pathoge action in photosyr
The study examining greenhouse conditions susceptibility to the Cultivated varieties Molecular, micro distinct characterist forms (Banchi <i>et al</i> the strain's taxono Karimzadeh & Foto A. <i>alternata</i> (Banch Comparative phyto Delta Storm and (Hannibal, 2011; No activity and an 189	ons. The tulip varieties T e fungus, while T. Bieberst demonstrated lower immun scopic, and macromorphol tics in the conidia of <i>A. an</i> <i>L.</i> 2020a; Jitjak <i>et al.</i> , 2021) omic classification, consist puhifar, 2021). Phylogenetic an <i>et al.</i> , 2020b; Baturo-Cies topathogenicity studies rever <i>T. Albatros</i> , and to cabba	Albatros and T. Delta S einiana and T. Biflora hity compared to natural ogical analyses clarifie <i>lternata</i> , including club b. Sequencing of the 18S ent with prior studies e analysis identified the niewska <i>et al.</i> , 2020). ealed significant damag age, highlighting varia ction led to a 25% redu ntent in infected plants	Storm showed mode exhibited weak lead plants. d the strain types -shaped and ellip S rRNA gene conf (Bavbek <i>et al.</i> , strain's close relate bility in pathoge action in photosyn s (Wang <i>et al.</i> , 20

322	Soil organic matter increased by 12% in infection zones, suggesting potential soil enrichment
323	(Ansari et al., 2022). Infected plants attracted 30% fewer insect pollinators, possibly affecting
324	fungal spread (Zhou et al., 2020). Gene sequencing revealed variants associated with
325	heightened pathogenicity, emphasizing their role in plant interactions (Stander et al., 2020).
326	Strains from different climatic zones showed mutations in genes linked to thermoresistance
327	and metabolism, which may aid adaptation (Verma et al., 2022). Novel mutations in toxin
328	production genes were identified, affecting pathogenicity (Hashimoto et al., 2019). High
329	variability in virulence genes suggests rapid evolution and adaptation of A. alternata (Zhou et
330	al., 2021). Phylogenetic analysis indicated global dispersal of the fungus (Mekapogu et al.,
331	2021).
332	
333	CONCLUSIONS
334	The strain isolated from <i>Tulipa</i> L. was accurately identified using the BLAST program to
335	compare the nucleotide sequences of the ITS region with the GenBank database. Phylogenetic
336	analysis revealed a 99% identity with related species, confirming the strain as <i>A. alternata</i> (Fr.)
337	Keissl. The study found that <i>A. alternata</i> causes significant damage to <i>Tulipa</i> L. plants, reducing
338	crop yield and impacting photosynthesis through leaf spotting and conidial stem development.
339	Molecular analysis of ribosomal RNA genes provided insights into the strain's taxonomic
340	classification and its relationship with other species, aiding precise disease identification and
341	understanding.
342	The infection with <i>Alternaria alternata</i> resulted in several notable alterations in physiological
343	parameters of <i>Tulipa</i> L. plants. Specifically, infected plants exhibited a significant decrease in
344	photosynthetic efficiency, as evidenced by reduced chlorophyll content and lower photosynthetic rates. There was also an increase in electrolyte leakage, indicating membrane
345 346	damage. Additionally, the infection led to a marked decrease in plant growth parameters,
340 347	including leaf area and shoot biomass, which further underscores the detrimental impact of the
348	pathogen on plant health.
349	Based on the results obtained, several strategies can be developed to control the spread of
350	Alternaria alternata in agriculture. These include the implementation of integrated pest
351	management (IPM) practices such as using resistant tulip varieties, applying targeted
352	fungicides, and employing crop rotation to reduce pathogen load. Additionally, developing
353	early detection methods using molecular tools can help in timely intervention and management.
354	These strategies aim to minimize the economic impact and improve the resilience of tulip crops
355	against <i>Alternaria</i> infections.

356	Cultivated tulip species such as T. Albatros, T. Delta Storm, T. Biebersteiniana, and T. Biflora
357	generally exhibit lower immunity compared to wild plants due to selective breeding practices
358	focused on aesthetic traits rather than disease resistance. These cultivars have often been bred
359	for specific flower characteristics, inadvertently reducing their natural defense mechanisms
360	against pathogens. In contrast, wild tulip species have evolved natural resistance mechanisms
361	that provide better protection against fungal infections. This reduced immunity in cultivated
362	varieties makes them more susceptible to Alternaria infections and highlights the need for
363	developing disease-resistant cultivars.
364	The study provides specific examples of how Alternaria alternata affects different tulip
365	varieties. For instance, T. Delta Storm showed the highest severity of infection with a lesion
366	area of 18.6 cm ² and a conidia count of 450×10^{3} /ml. In contrast, <i>T. Biebersteiniana</i> exhibited
367	minimal damage with a lesion area of only 6.5 cm ² and a conidia count of 130×10^{3} /ml. These
368	findings demonstrate the variable impact of the pathogen across different tulip varieties and
369	underscore the need for targeted management strategies. The data clearly illustrates how
370	Alternaria alternata affects the health and productivity of various tulip species, validating the
371	necessity for tailored control measures.
372	Moreover, there is an acknowledged potential impact of the infection on the biodiversity of
373	soil microorganisms and insect vectors. These interrelationships necessitate supplementary

374 research for a comprehensive understanding of the ecosystemic repercussions of the infection. 375 The practical application of the findings from this study is associated with the development 376 of strategies for controlling the dissemination of A. alternata fungus in agriculture. Our 377 discoveries have the potential to be integrated into international practices aimed at combating 378 phytopathogens, including the establishment of resilient plant varieties and the formulation of 379 effective methods to counteract infection.

380 381

382

383

384

386

ACKNOWLEDGEMENTS

This work was financially supported by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant AP14870298).

385 **REFERENCES**

Abiev, S. A. 2002. Rust fungi of Kazakhstan. Gylym, Almaty.

Ansari, A. A., Siddiqui, Z. H., Alatawi, F. A., Alharbi, B. M. and Alotaibi, A. S. 2022. An
assessment of biodiversity in Tabuk Region of Saudi Arabia: A comprehensive review. *Sustainability*, 14(17): 10564. https://doi.org/10.3390/su141710564

- Banchi, E., Ametrano, C. G., Greco, S., Stanković, D., Muggia, L. and Pallavicini, A. 2020a.
 PLANiTS: A curated sequence reference dataset for plant ITS DNA metabarcoding.
 Database, 2020: baz155. https://doi.org/10.1093/database/baz155
- Banchi, E., Ametrano, C. G., Tordoni, E., Stanković, D., Ongaro, S., Tretiach, M., Pallavicini,
 A., Muggia, L. and ARPA Working Group. 2020b. Environmental DNA assessment of
 airborne plant and fungal seasonal diversity. *Sci. Total Environ.*, **738**: 140249.
 https://doi.org/10.1016/j.scitotenv.2020.140249
- Baturo-Ciesniewska, A., Pusz, W. and Patejuk, K. 2020. Problems, limitations, and challenges
 in species identification of Ascomycota members on the basis of ITS regions. *Acta Mycol.*,
 55(1): 5512. https://doi.org/10.5586/am.5512
- Bauer, M., Mukhametov, A. and Trifonov, P. 2023. Relationship between the state of the
 countrys logistics and perishable goods output: dairy industry. *The TQM Journal*, **35** (7):
 1799-1814. https://doi.org/10.1108/TQM-04-2022-0131
- Bavbek, S., Erkekol, F. O., Ceter, T., Mungan, D., Ozer, F., Pinar, M. and Misirligil, Z. 2006.
 Sensitization to Alternaria and Cladosporium in patients with respiratory allergy and
 outdoor counts of mold spores in Ankara atmosphere, Turkey. *J. Asthma*, 43(6): 421–
 426. https://doi.org/10.1080/02770900600710706
- 407 Bush, R. K. and Prochnau, J. J. 2004. Alternaria-induced asthma. J. Allergy Clin. Immunol.,
 408 113(2): 227–234. https://doi.org/10.1016/j.jaci.2003.11.023
- Chacón, F. I., Sineli, P. E., Mansilla, F. I., Pereyra, M. M., Diaz, M. A., Volentini, S. I.,
 Poehlein, A., Meinhardt, F., Daniel, R. and Dib, J. R. 2022. Native cultivable bacteria
 from the blueberry microbiome as novel potential biocontrol agents. *Microorganisms*,
 10(5): 969. https://doi.org/10.3390/microorganisms10050969
- De Clerck, E., Vanhoutte, T., Hebb, T., Geerinck, J., Devos, J. and De Vos, P. 2004. Isolation,
 characterization, and identification of bacterial contaminants in semifinal gelatin extracts. *AEM*, **70(6)**: 3664-3672. https://doi.org/10.1128/AEM.70.6.3664-3672.2004
- Didelon, M., Khafif, M., Godiard, L., Barbacci, A. and Raffaele, S. 2020. Patterns of sequence
 and expression diversification associate members of the *PADRE* gene family with
 response to fungal pathogens. *Front. Genet.*, **11**: 491.
 https://doi.org/10.3389/fgene.2020.00491
- Fung, F., Tappen, D. and Wood, G. 2000. Alternaria-associated asthma. *Appl. Occup. Environ. Hyg.*, 15(12): 924–927. https://doi.org/10.1080/104732200750051157

- Gannibal, Ph. B. 2011. Understanding the phylogeny of the alternarioid hyphomycetes: What
 can the consequences be in taxonomy? In: *Systematics and evolution of Fungi*, (Eds.):
- 424 Misra, J. K., Tewari, J. P. and Deshmukh, S. K. CRC Press, Boca Raton, PP. 305–333.
- Hannibal, F. B. 2011. *Monitoring of crop alternariosis and identification of fungi of the genus Alternaria*. GNU VIZR Russian Agricultural Academy, Saint Petersburg.
- Hashimoto, S., Tanaka, E., Ueyama, M., Terada, S., Inao, T., Kaji, Y., Yasuda, T., Hajiro, T.,
 Nakagawa, T., Noma, S., Honjo, G., Kobashi, Y., Abe, N., Kamei, K. and Taguchi, Y.
 2019. A case report of pulmonary *Botrytis* sp. infection in an apparently healthy
 individual. *BMC Infect. Dis.*, **19**(1): 684. https://doi.org/10.1186/s12879-019-4319-2
- Iqbal, A., Khan, R. S., Shehryar, K., Imran, A., Ali, F., Attia, S., Shah, S. and Mii, M. 2019.
 Antimicrobial peptides as effective tools for enhanced disease resistance in plants. *PCTOC*, 139: 1–15. https://doi.org/10.1007/s11240-019-01668-6
- Jin, G. Q., Mao, G. Y., Li, D. W., Wan, Y. and Zhu, L. H. 2021. First report of *Alternaria alternata* causing leaf spots of *Liriodendron chinense× tulipifera* in China. *J. Plant Pathol.*, **103**: 689–690. https://doi.org/10.1007/s42161-021-00775-8
- Jitjak, W., Chairop, W. and Sanoamuang, N. 2021. Molecular Identification of fungal species
 causing brown circular leaf spot disease in seedlings of Siamese Rosewood (Dalbergia
 cochinchinensis Pierre ex Laness). *Sci. Technol. Asia*, 26(3): 156–166.
- Karabassov R., Bauer M., Mogilnyy S., Mauyanova A., Mikhnova S. 2018. Development of
 recommendations to create the conditions for attraction of highly-qualified specialists to
 the farming sector of Kazakhstan (based on the materials of the Akmola region). *Revista Espacios*, **39(12)**: 20-22.
- Karimzadeh, S. and Fotouhifar, K. B. 2021. Report of some fungi of Pleosporaceae family
 associated with leaf spot symptoms of plants in Chaharmahal and Bakhtiari province,
 Iran. J. Crop Prot., 10(2): 319–340.
- Kaur, S. 2023. An overview on fungal diseases in angiospermic plants. *Asian Plant Res. J.*, **11(2)**: 24–33. https://doi.org/10.9734/aprj/2023/v11i2207
- Khmelnitskaya, I. I., Vepritskaya, I. G., Arinbasarov, M. U. and Velikanov, L. L. 2003. Soil
 Deuteromycetes of central and eastern areas of Samara Oblast. *Mycol. Phytopathol.*,
 37(3): 58–63.
- 452 Kuprienko, N. P. 2005. *Diseases of onions in Belarus*. Belprim, Minsk.
- Kuroyanagi, T., Bulasag, A. S., Fukushima, K., Ashida, A., Suzuki, T., Tanaka, A., Camagna,
 M., Sato, I., Chiba, S., Ojika, M. and Takemoto, D. 2022. *Botrytis cinerea* identifies host

- 455 plants via the recognition of antifungal capsidiol to induce expression of a specific
 456 detoxification gene. *PNAS Nexus*, **1(5)**: pgac274.
 457 https://doi.org/10.1093/pnasnexus/pgac274
- Maksimov, I. V., Singh, B. P., Cherepanova, E. A., Burkhanova, G. F. and Khairullin, R. M.
 2020. Prospects and applications of lipopeptide-producing bacteria for plant protection. *Appl. Biochem. Microbiol.*, 56: 15–28. https://doi.org/10.1134/S0003683820010135
- Mehmood, M. A., Zhao, H., Cheng, J., Xie, J., Jiang, D. and Fu, Y. 2020. Sclerotia of a
 phytopathogenic fungus restrict microbial diversity and improve soil health by
 suppressing other pathogens and enriching beneficial microorganisms. *J. Environ. Manage.*, 259: 109857. https://doi.org/10.1016/j.jenvman.2019.109857
- Mekapogu, M., Jung, J. A., Kwon, O. K., Ahn, M. S., Song, H. Y. and Jang, S. 2021. Recent
 progress in enhancing fungal disease resistance in ornamental plants. *Int. J. Mol. Sci.*,
 22(15): 7956. https://doi.org/10.3390/ijms22157956
- Mishra, P. K., Fox, R. T. and Culham, A. 2003. Development of a PCR-based assay for rapid
 and reliable identification of pathogenic Fusaria. *FEMS Microbiol. Lett.*, 218(2): 329–
 332. https://doi.org/10.1111/j.1574-6968.2003.tb11537.x
- 471 Ospanov A. A, Muslimov N. Z, Timurbekova A. K, Mamayeva L. A, Jumabekova G. B. 2020.
 472 The Effect of Various Dosages of Poly-Cereal Raw Materials on the Drying Speed and
 473 Quality of Cooked Pasta During Storage. *Curr Res Nutr Food Sci*, 8(2): 1-10. doi:
 474 http://dx.doi.org/10.12944/CRNFSJ.8.2.11
- 475 Ospanov, A.A., Popescu, C.V., Muslimov, N.Z., Gaceu, L., Timurbekova, A.K., Stefan, M.,
 476 Dune, A., Popescu, C., & Jumabekova, G.B. 2018. Study of the food safety and nutritional
 477 value of the buckwheat grains of Kazakhstani selection. *Journal of Hygienic Engineering*478 *and Design*, 22: 33-38.
- Otero-Blanca, A., Pérez-Llano, Y., Reboledo-Blanco, G., Lira-Ruan, V., Padilla-Chacon, D.,
 Folch-Mallol, J. L., Sánchez-Carbente. M. d. R., Ponce De León, I. and Batista-García,
 R. A. 2021. *Physcomitrium patens* infection by *Colletotrichum gloeosporioides*:
 Understanding the fungal–bryophyte interaction by microscopy, phenomics and RNA
 sequencing. *J. Fungi.*, **7(8)**: 677. https://doi.org/10.3390/jof7080677
- Pandit, M. A., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., Rawat, C. D., Mishra,
 V. and Kaur, J. 2022. Major biological control strategies for plant pathogens. *Pathogens*,
 11(2): 273. https://doi.org/10.3390/pathogens11020273

- Robertshaw, H. and Higgins, E. 2005. Cutaneous infection with Alternaria tenuissima in an
 immunocompromised patient. *Br. J. Dermatol.*, **153**(5): 1047–1049.
 https://doi.org/10.1111/j.1365-2133.2005.06833.x.
- Salybekova, N. N., Basim, E., Basim, H. and Turmetova, G. Zh. 2019. Characterization of
 Alternaria brassicae causing black leaf spot disease of cabbage (Brassica oleracea var.
 capitata) in the southern part of Kazakhstan. *Acta Sci. Pol. Hortorum Cultus.*, 18(4): 3–
 13. https://doi.org/10.24326/asphc.2019.4.1
- 494 Srivastava, S., Dashora, K., Ameta, K. L., Singh, N. P., El-Enshasy, H. A., Pagano, M. C.,
 495 Hesham, A. E., Sharma, G. D., Sharma, M. and Bhargava, A. 2021. Cysteine-rich
 496 antimicrobial peptides from plants: The future of antimicrobial therapy. *Phytother. Res.*,
 497 35(1): 256–277. https://doi.org/10.1002/ptr.6823
- 498 Stander, E. A., Williams, W., Mgwatyu, Y., Heusden, P. V., Rautenbach, F., Marnewick, J.,
 499 Roes-Hill, M. L. and Hesse, U. 2020. Transcriptomics of the rooibos (*Aspalathus linearis*)
 500 species complex. *Biotech*, 9(4): 19. https://doi.org/10.3390/biotech9040019
- Stauder, C. M., Utano, N. M. and Kasson, M. T. 2020. Resolving host and species boundaries
 for perithecia-producing nectriaceous fungi across the central Appalachian Mountains.
 Fungal Ecol., 47: 100980. https://doi.org/10.1016/j.funeco.2020.100980
- Verma, V., Kumar, A., Verma, J. and Priti, B. B. 2022. Conventional and molecular
 interventions for biotic stress resistance in floricultural crops. In: *Genomic designing for biotic stress resistant technical crops*. Springer, Cham, PP. 227–246.
- Wang, C., Zhang, Y., Zhang, W., Yuan, S., Ng, T. and Ye, X. 2019a. Purification of an
 antifungal peptide from seeds of *Brassica oleracea* var. *gongylodes* and investigation of
 its antifungal activity and mechanism of action. *Molecules*, 24(7): 1337.
 https://doi.org/10.3390/molecules24071337
- Wang, W., Chen, X., Yan, H., Hu, J. and Liu, X. 2019b. Complete genome sequence of the
 cyprodinil-degrading bacterium *Acinetobacter johnsonii LXL_C1. Microb. Pathog.*, 127:
 246–249. https://doi.org/10.1016/j.micpath.2018.11.016
- Xu, Y. 2023. *Genetic dissection of Sclerotinia sclerotiorum biology using forward genetics* Published doctoral dissertation, University of British Columbia.
- Zhou, Q., Yang, Y., Ahmed, H., Wang, Y., Zahr, K., Fu, H., Sarkes, A. and Feng, J. 2020.
 Diseases Diagnosed on samples submitted to the Alberta Plant Health Lab in 2019. *Canad. J. Plant Pathol.*, 42: 11–15.

- 519 Zhou, T., Liu, H., Huang, Y., Wang, Z., Shan, Y., Yue, Y., Xia, Z., Liang, Y., An, M. and Wu,
- 520 Y. 2021. ε-poly-L-lysine Affects the Vegetative Growth, Pathogenicity and Expression
- 521 Regulation of Necrotrophic Pathogen *Sclerotinia sclerotiorum* and *Botrytis cinerea*. J.
- 522 Fungi, **7(10**): 821. https://doi.org/10.3390/jof7100821
- 523 Zhu, H. Y., Ma, Y., Ke, Y. and Li, B. 2021. Screening and identification of an antagonist against
- 524 the pathogen of kiwifruit canker and its antifungal activity to the phytopathogenic fungus.
- 525 Biotechnol. Bull., **37(6)**: 66–72. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2020-
- 526 0473